Temperature-sensitive splicing in the floral homeotic mutant apetala3-1.
نویسندگان
چکیده
The floral homeotic gene APETALA3 (AP3) is required for stamen and petal development in Arabidopsis. The previously described ap3-1 allele is temperature sensitive and carries a missense mutation near a 5' splice site. The missense mutation lies within a domain of the AP3 protein that is thought to be important for protein-protein interactions, which suggests that temperature sensitivity of ap3-1 could reflect an unstable interaction with cofactors. Here, we show instead that the ap3-1 mutation causes a temperature-dependent splicing defect and that temperature sensitivity is not a property of the protein products of ap3-1 but of RNA processing, possibly because of unstable base pairing between the transcript and small nuclear RNAs. The unexpected defect of the ap3-1 mutant offers unique opportunities for genetic and molecular studies of splice site recognition in plants.
منابع مشابه
Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3.
The APETALA3 floral homeotic gene is required for petal and stamen development in Arabidopsis. APETALA3 transcripts are first detected in a meristematic region that will give rise to the petal and stamen primordia, and expression is maintained in this region during subsequent development of these organs. To dissect how the APETALA3 gene is expressed in this spatially and temporally restricted d...
متن کاملAn intragenic suppressor of the Arabidopsis floral organ identity mutant apetala3-1 functions by suppressing defects in splicing.
The Arabidopsis floral organ identity gene APETALA3 (AP3) specifies the identity of petals and stamens in the flower. In flowers mutant for the temperature-sensitive ap3-1 allele, the petals and stamens are partially converted to sepals and carpels, respectively. ap3-1 contains a single nucleotide change in the AP3 gene that alters both an amino acid in the AP3 protein and the 5' splice consens...
متن کاملSUPERMAN, a regulator of floral homeotic genes in Arabidopsis.
We describe a locus, SUPERMAN, mutations in which result in extra stamens developing at the expense of the central carpels in the Arabidopsis thaliana flower. The development of superman flowers, from initial primordium to mature flower, is described by scanning electron microscopy. The development of doubly and triply mutant strains, constructed with superman alleles and previously identified ...
متن کاملFloral homeotic genes are targets of gibberellin signaling in flower development.
Gibberellins (GAs) are a class of plant hormones involved in the regulation of flower development in Arabidopsis. The GA-deficient ga1-3 mutant shows retarded growth of all floral organs, especially abortive stamen development that results in complete male sterility. Until now, it has not been clear how GA regulates the late-stage development of floral organs after the establishment of their id...
متن کاملA Cucumber DELLA Homolog CsGAIP May Inhibit Staminate Development through Transcriptional Repression of B Class Floral Homeotic Genes
In hermaphroditic Arabidopsis, the phytohormone gibberellin (GA) stimulates stamen development by opposing the DELLA repression of B and C classes of floral homeotic genes. GA can promote male flower formation in cucumber (Cucumis sativus L.), a typical monoecious vegetable with unisexual flowers, and the molecular mechanism remains unknown. Here we characterized a DELLA homolog CsGAIP in cucum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 10 9 شماره
صفحات -
تاریخ انتشار 1998